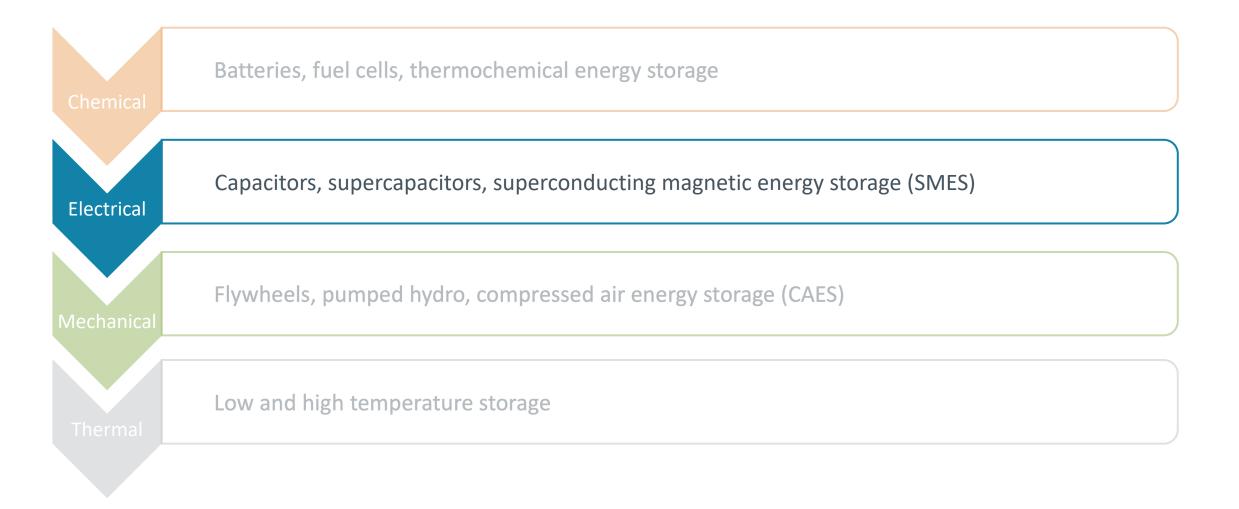


People for Energy and Environmental Literacy

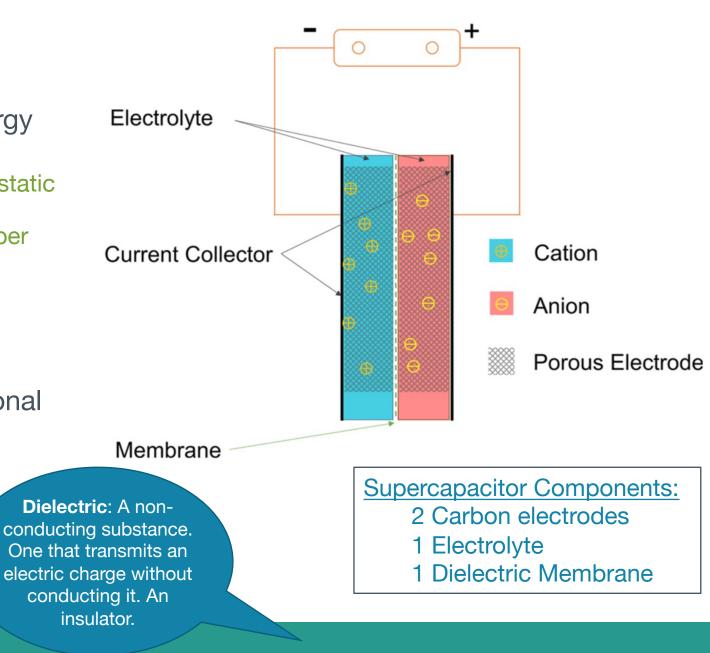
Electrical Energy Storage

Capacitors, Supercapacitors, SMES


Recommended for grades 7-12

Copyright © 2024 GreenLearning Canada Foundation. All Rights Reserved.

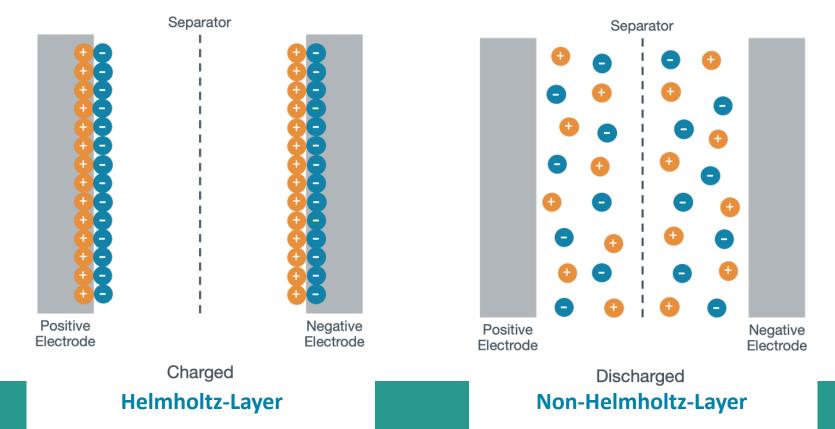
Electrical Energy Storage



Supercapacitors

- European Association for Storage of Energy definition:
 - "An energy storage system based on electrostatic effects that occur between two carbon electrodes with high specific surface areas per volume"
- Supercapacitors are also called Electrochemical Double Layer Capacitor (EDLC)
- EDLC's store more energy than conventional capacitors
- Operating temperature: -40°C to 70 °C

Supercapacitors Basics

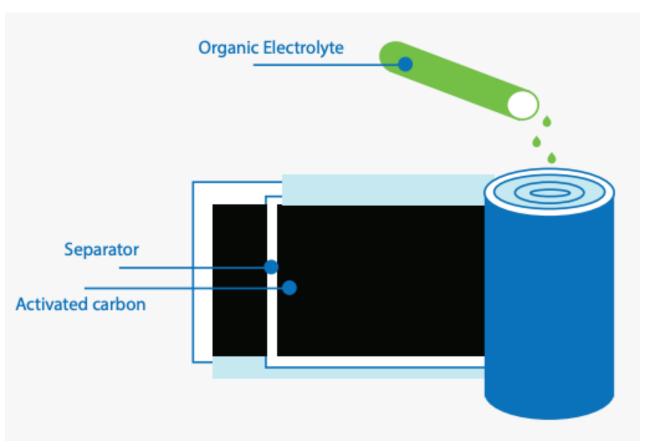

- Capacitors are like batteries they both store electrical energy
 - Batteries use chemical reactions to produce electrons at one terminal and absorb the electrons at the other terminal
- Capacitors do not have two terminals. Instead, they have two plates
- Capacitors do not produce electrons like batteries, rather, they store already existing electrons
- The two plates are separated by a dielectric material (electrical insulator):
 - Dielectric materials are mica, ceramic, cellulose, porcelain, Mylar, Teflon, and air
- Capacitance is the storage potential of a capacitor, and is measured in Farads

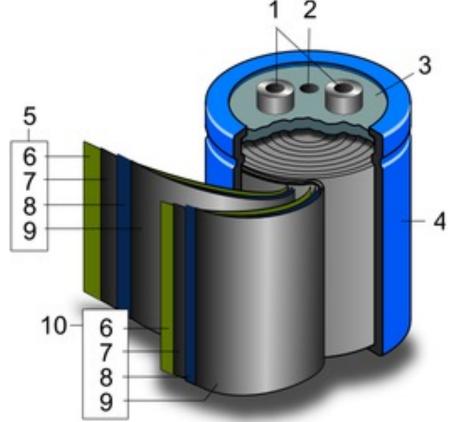
How do Supercapacitors Work?

- Capacitors store energy based on the electrostatic effects between the two carbon electrodes
- When charged, cations (+) accumulate at the negative electrode, and anions (-) accumulate at the positive electrode
 - This forms the Helmholtz-Layer (creating two distinct charged "layers")

Electrostatic Effect

- Electrostatic effect is the force electric charges exert on one another.
 - Coulomb's Law
- It is the buildup of an electrical charge on a surface
- When two objects are rubbed together, the electrons are transferred between each other
- Examples:


- Materials:
 - Balloon
 - Water faucet
- Instructions:
 - Blow up the balloon
 - Turn tap on so there is a light stream
 - Rub the balloon against something (try different surfaces and materials)
 - Hold the balloon near the water stream. What happens?


ACTIVITY: Electrostatic Effect

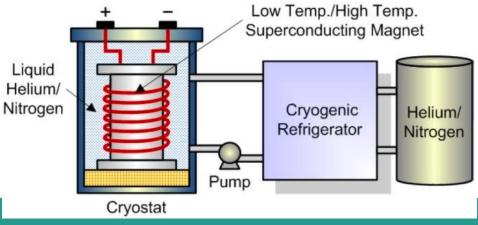
Components of a Supercapacitor

- 1. Terminals
- 2. Safety vent
- 3. Sealing disc
- 4. Aluminum can
- 5. Positive pole

- 6. Separator
- 7. Carbon electrode
- 8. Collector
- 9. Carbon electrode
- 10. Negative pole

Supercapacitors

Key Performance Data – European Association for Storage of Energy


Power Range	MW's	
Energy Range	kWh's	
Discharge Time	Seconds to minutes	
Cycle Life	1 million cycles	
Life Duration	10 years at room temperature	
Reaction Time	5 milliseconds	
Efficiency	90%	
Applications	Backup power, load balancing, engine start/acceleration for hybrid vehicles, energy storage for intermittent renewable energy	

Superconducting Magnetic Energy Storage (SMES)

- SMES uses superconducting coils to store energy in the magnetic field
- What are superconductors?
 - A material that will create electricity with little to no resistance below the critical temperature.
- No resistance is important because it means no energy losses
- When a superconductor is charged, the electrical current stored will flow through the closed superconducting coils indefinitely, until acted upon by another force.
- Unlike other storage technologies, SMES stores the energy in its electrical form and does not require further conversion
- The superconducting coil prevents the energy energy from dissipating within milliseconds

Cryogenic temperature means extremely low temperatures

Superconducting Coil

- Two types:
 - Low temperature
 - High temperature
- Made of superconducting wires
- Wires are cooled to their cryogenic temperatures to establish zero resistance
- No resistance means larger electrical currents are possible (and therefore much stronger magnetic fields), and no energy lost to heat

Magnetic Field (B)

- A vector field with field line a notation
- A vector field is described by its magnitude (strength) and direction
- These lines never cross and point continuously from north to south (a closed loop)
- SI units: tesla (T)
 - The force applied to a moving charge due to the field
- The electric current (/) and magnetic field (*B*) are related by the *right-hand rule*

Your thumb shows the direction of the electric current and your fingers point in the direction of the magnetic field. If you know one, you can figure out the other.

SMES

Key Performance Data

Power Range	0.1 – 10 MW	
Discharge Time	Milliseconds – 8 seconds	
Cycle Life	Unlimited	
Life Duration	20 – 30 years	
Efficiency	95%	
Applications	Uninterruptible Power Supply	

Advantages and Disadvantages of Electrical Energy Storage

ADVANTAGES	DISADVANTAGES
 High energy efficiency: Capacitor and SMES – 90-95% Fast responding – can respond instantaneously and provides energy for a brief period. Provides power quality services for times of voltage sags and power outages Environmentally friendly – does not require chemical reactions or produce toxins 	 SMES and supercapacitors are developed but not considered a mature technology SMES requires large amounts of power to maintain the superconducting temperature Suitable for short duration power supply only – limited hours in storage High self-discharge for long periods (10-15%)

Environmental Literacy

Thank you!

Foundation

This is a project of GreenLearning offered in partnership with PEEL thanks to funding support from the Alberta Energy Efficiency Education Grant Program.

Alberta