

Activity Name	Organizing Idea	Learning Outcome
Activity: Knowing Energy: Stair Climb	10 - Unit B: Energy Flow in Technological Systems	<p>Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated</p> <p>Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems</p> <p>Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems</p>
Activity: Knowing Energy: Tea at Home	10 - Unit B: Energy Flow in Technological Systems	<p>Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated</p> <p>Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems</p> <p>Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems</p>
	14 - Unit B: Understanding Energy Transfer Technologies	<p>Describe how natural and technological cooling and heating systems are based upon the transfer of thermal energy (heat) from hot to cold objects</p> <p>Explain the functioning of common methods and devices designed to control the transfer of thermal energy</p>
Activity: Knowing Energy: Race to a kWh	10 - Unit B: Energy Flow in Technological Systems	<p>Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated</p> <p>Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems</p> <p>Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems</p>
Activity: Knowing Energy: How Intense is Your Electricity Usage?	10 - Unit B: Energy Flow in Technological Systems	<p>Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated</p> <p>Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems</p> <p>Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems</p>

Activity: Knowing Energy: The Electricity Grid	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems
Activity: Knowing Energy: Renewables	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems
Activity: Knowing Energy: The Big Picture	10 - Unit D: Energy Flow in Global Systems	Describe how the relationships among input solar energy, output terrestrial energy and energy flow within the biosphere affect the lives of humans and other species
		Investigate and interpret the role of environmental factors on global energy transfer and climate change
Activity: All About the Baseline	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems
Activity: Can You Observe How You Conserve?	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems

		Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
Activity: Energy Hogs	10 - Unit B: Energy Flow in Technological Systems	Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems
Activity: Electronic Overload	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems
Activity: Extra Energy Investigation	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems
Activity: How Smart is Your Smart Board?	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems
Activity: Imagination Station	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems

Activity: Small Appliance Energy Reliance	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems
Activity: Start Me Up!	14 - Unit B: Understanding Energy Transfer Technologies	Describe how natural and technological cooling and heating systems are based upon the transfer of thermal energy (heat) from hot to cold objects
		Explain the functioning of common methods and devices designed to control the transfer of thermal energy
Activity: Start Me Up!	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems
Activity: Total Energy vs. Total Cost	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems
Activity: Understanding Energy Efficiency in Your School	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems
Activity: Community Walk	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems

Activity: School Energy Audit	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems
Activity: Find the Phantom Load	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems
Activity: Home Energy Audit	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems
Activity: Watchers and Seekers	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems
Activity: Science Slam	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems

Activity: Speak for the Trees	10 - Unit B: Energy Flow in Technological Systems	Analyze and illustrate how technologies based on thermodynamic principles were developed before the laws of thermodynamics were formulated
		Explain and apply concepts used in theoretical and practical measures of energy in mechanical systems
		Apply the principles of energy conservation and thermodynamics to investigate, describe and predict efficiency of energy transformation in technological systems
10 - Unit D: Energy Flow in Global Systems	Describe how the relationships among input solar energy, output terrestrial energy and energy flow within the biosphere affect the lives of humans and other species	
	Investigate and interpret the role of environmental factors on global energy transfer and climate change	